四虎国产精品永久在线国在线 ,国内精久久久久久久久久人,久久久精品久久久欧美俄罗乱妇,中国孕妇变态孕交XXXX

語言 ?
中文EN

不明原因反復(fù)妊娠丟失的免疫治療策略

發(fā)布時間:  2025-03-17 15:18:56

摘要

反復(fù)妊娠丟失recurrent pregnancy loss, RPL定義為連續(xù)發(fā)生兩次或兩次以上的妊娠丟失。約一半病例沒有明確病因,被稱為不明原因反復(fù)妊娠丟失(unexplained recurrent pregnancy lossURPL)。母胎免疫功能失調(diào)被認為是URPL因之一。人類白細胞抗原相容性增加、易感基因、缺乏阻斷抗體以及免疫細胞功能失調(diào)都會破壞母胎界面的免疫耐受環(huán)境。為了糾正母胎免疫失衡,一些免疫療法已被用于URPL治療。本綜述總結(jié)了URPL患者母胎界面免疫微環(huán)境的特點和機制,以及相關(guān)免疫療法,為今后的研究提供參考。

1. 前言

反復(fù)妊娠丟失(recurrent pregnancy loss, RPL)是一種常見的妊娠早期并發(fā)癥,連續(xù)多次自然流產(chǎn)為特點。美國生殖醫(yī)學(xué)會(ASRM)將其定義為兩次或兩次以上臨床妊娠丟失,但不強調(diào)流產(chǎn)的連續(xù)性孕齡[1]。歐洲人類生殖與胚胎學(xué)學(xué)會(ESHRE)將其定義為連續(xù)發(fā)生兩次以上在妊娠24周前的胎兒丟失[2]??傊?,RPL的定義尚未統(tǒng)一。關(guān)于流產(chǎn)的孕齡、連續(xù)性、配偶的同以及是否包括生化妊娠仍存爭議。

RPL渴望生育的夫婦帶來了巨大的心理壓力和經(jīng)濟負擔。近年來,RPL的發(fā)病率逐年上升,全球約有1%-2%的夫婦受到影響[2]。染色體異常是流產(chǎn)的常見原因。此外,子宮解剖結(jié)構(gòu)異常、內(nèi)分泌失調(diào)、病毒感染、慢性疾病、有害環(huán)境暴露,甚至孕婦年齡增加等因素都會增加RPL的風險[3]。然而,經(jīng)過綜合評估后,仍有約一半的RPL病例原因不明,被稱為不明原因RPLunexplained recurrent pregnancy lossURPL),母胎免疫功能失調(diào)可能是URPL的主要機制[4, 5]。

對母而言,胎兒被視為半異體移植,因此母胎界面的免疫耐受對維持妊娠至關(guān)重要[6]。URPL患者存在明顯的母胎免疫功能障礙,包括阻斷抗體缺乏、免疫細胞異常、細胞因子分泌紊亂、人類白細胞抗原(human leukocyte antigen,HLA)表達異常等[7, 8]。近年來,出現(xiàn)了一針對URPL免疫療法,并呈現(xiàn)出不同的臨床表現(xiàn)[9]。本綜述以不明原因的復(fù)發(fā)性妊娠丟失、母胎免疫耐受免疫療法為主要關(guān)鍵詞,系統(tǒng)檢索和整理了截至2024111日在PubMedWeb of Science上的所有相關(guān)英文文獻。本研究旨在總結(jié)URPL母胎免疫調(diào)節(jié)失調(diào)機制的研究進展,以及URPL的潛在免疫療法。

2. 母胎交互的發(fā)展

早期研究認為,持續(xù)的免疫抑制是成功妊娠的重要條件。然而,后續(xù)研究發(fā)現(xiàn),免疫缺陷和蛻膜內(nèi)免疫細胞缺乏會影響胚胎著床和胎盤發(fā)育[6]。除了蛻膜基質(zhì)細胞和滋養(yǎng)層細胞,免疫細胞浸潤也是母胎界面微環(huán)境的重要組成部分。子宮內(nèi)膜蛻膜化為胚胎著床提供了適宜的環(huán)境,隨后胎兒絨毛外滋養(yǎng)細胞(extravillous trophoblasts,EVTs)侵入子宮,將螺旋動脈重塑為擴張的大血管[10]。在這一過程中,免疫細胞也發(fā)揮了重要作用。蛻膜自然殺傷細胞(decidual natural killerdNK通過分解平滑肌分泌趨化因子吸引入侵的EVTs,促進螺旋動脈重塑蛻膜巨噬細胞則負責清除這一過程中產(chǎn)生的凋亡碎片[11]。此后,在妊娠期類固醇激素的影響下,蛻膜組織中的免疫細胞亞群及其分泌的細胞因子發(fā)生了一系列生理變化,形成了一個獨特的母胎免疫微環(huán)境。

妊娠早期,子宮內(nèi)膜基質(zhì)細胞和浸潤的免疫細胞在著床部位分泌多種炎癥因子,包括白細胞介素-6、白細胞介素-8、腫瘤壞死因子α和趨化因子配體1CXCL1[12]。子宮內(nèi)膜活檢可誘導(dǎo)炎癥反應(yīng)。研究發(fā)現(xiàn),活檢增加子宮內(nèi)膜容受性,提示免疫浸潤形成的炎癥環(huán)境是妊娠早期胚胎著床和胎盤形成的重要條件[13]。

胎盤形成后,不同表型和功能的免疫細胞母胎界面共同建立免疫耐受微環(huán)境。其中,蛻膜巨噬細胞主要呈現(xiàn)M2抗炎表型,促進滋養(yǎng)細胞侵襲和胎兒組織更新。同時吞噬衰老凋亡的滋養(yǎng)細胞,防止父抗原暴露引發(fā)的胎兒免疫反應(yīng)。dNK細胞主要表現(xiàn)為CD56+CD16-表型,細胞毒性低,通過CD14+巨噬細胞相互作用,誘導(dǎo)調(diào)節(jié)性TTreg)細胞生成,進而抑制免疫反應(yīng)[15]。此外,Tregs調(diào)節(jié)Th17細胞的數(shù)量和功能,發(fā)揮抗炎作用[16]

臨產(chǎn)前,胎盤界面的免疫環(huán)境再次發(fā)生變化。免疫細胞子宮肌層浸潤,有助于促進子宮收縮、分娩和胎盤剝離,這些是分娩做準備的生理過程。促炎性核因子-κBNF-κB)信號通路是啟動分娩和在分娩過程中持續(xù)發(fā)揮作用的途徑[17]。研究發(fā)現(xiàn),在羊膜腔內(nèi)注射NF-κB抑制肽SN50可推遲懷孕大鼠的分娩時間[18]。一項單細胞RNA測序研究發(fā)現(xiàn),胎兒間充質(zhì)細胞和母體蛻膜細胞在炎癥信號釋放中尤為活躍。CXCL、TNFgalectinsIL-6等炎癥通路參與了分娩過程[19]。

3. 母胎界面的免疫耐受

3.1 HLAs

主要組織相容性復(fù)合體(major histocompatibility complex, MHC)分子是高度多態(tài)的蛋白質(zhì),主要功能是向抗原特異性T細胞呈遞抗原[20]。人類MHC分子被稱為HLA,分為三類。在正常妊娠期間,父母雙方的HLA是不容的。胚胎攜帶的父親HLA會刺激母親免疫系統(tǒng)產(chǎn)生抗體,從而誘導(dǎo)母胎免疫耐受維持妊娠。EVTs不表達移植過程同種異體T細胞的主要靶標,包括HLA-A、HLA-B、HLA-DRHLA-DQHLA-DP分子等,反而表達HLA-C、HLA-E、HLA-FHLA-G分子[20]。

HLA-C分為HLA-C1HLA-C2兩類。免疫球蛋白樣受體(Killer Immunoglobulin-like Receptor,KIRHLA-C的受體,主要表達于NK細胞表面[21]。KIR亞型,一個具有激活功能,一個具有抑制功能。HLA-CNK細胞上的抑制性KIR相互作用可抑制NK細胞的殺傷活性,從而促進EVTs侵襲和胎盤血管重塑[22]。Sharkey等發(fā)現(xiàn),妊娠早期蛻膜組織中表達KIRsCD56+細胞比例增加,KIR基因mRNA表達水平升高[23]。此外,部分蛻膜T細胞亞群表達靶向HLA-CKIRs[24]。研究表明,T細胞上KIR受體可抑制TCR介導(dǎo)的活化,并影響其在細胞毒性和細胞因子產(chǎn)生中的作用[20]。

吸收其他HLA I類分子前導(dǎo)序列段,可調(diào)節(jié)HLA-E細胞表面表達[22]。HLA-ENK細胞上抑制性受體CD94/NKG2A復(fù)合物的主要配體。缺乏源自HLA-I分子的肽,HLA-E無法呈現(xiàn)細胞表面,導(dǎo)致細胞更易遭受NK細胞誘導(dǎo)的細胞毒性的影響。此外,HLA-ECD8+ T細胞受體CD94/NKG2C結(jié)合,激活CD8+ T細胞亞群增殖及其功能啟動[25]。

HLA-F是一種非經(jīng)典HLA I類分子,多態(tài)性有限,在各種細胞類型中普遍表達。激活dNK細胞上的KIR2DS4,分泌粒細胞巨噬細胞集落刺激因子等趨化因子,從而促進滋養(yǎng)細胞侵襲。因此,滋養(yǎng)層細胞中HLA-F表達水平升高,可能是dNK細胞支持胚胎著床的關(guān)鍵機制[26]。

HLA-G是一種多態(tài)性的非經(jīng)典MHC I類分子,特異性表達于EVTs表面,對建立母胎免疫耐受和維持正常妊娠至關(guān)重要。HLA-GdNK細胞表面的KIR2DL4受體結(jié)合,可上調(diào)CXCL10、胎盤生長因子和血管內(nèi)皮生長因子,促進血管重塑[27]。此外,ILT2與蛻膜樹突狀細胞(dDCs)上的HLA-G結(jié)合時,上調(diào)IL-10IL-6表達,抑制異體淋巴細胞增殖,促使dDCs分化為耐受表型[28]。

 

3.2 阻斷抗體

在正常妊娠中,足月孕婦血清中阻斷因子阻斷父系抗原誘導(dǎo)的母體淋巴細胞增殖20]。這些阻斷因子主要成分是IgG。阻斷抗體(又稱抗父淋巴細胞抗體)在妊娠早期開始產(chǎn)生,妊娠頭三個月達峰,后逐漸下降,分娩時再次上升,并隨著妊娠次數(shù)的增加而增加[29]。研究發(fā)現(xiàn),阻斷抗體不僅能覆蓋父異體抗原,阻止免疫識別,還能降低外周血NK細胞比例,推動免疫平衡Th1型向Th2偏移[7]。

 

3.3 蛻膜免疫細胞

母胎免疫耐受是成功妊娠的必要條件。在孕早期,蛻膜中含有大量NK細胞,占>70%,其次是蛻膜巨噬細胞,約占20%-25%。此外,各種T細胞和樹突狀細胞也參與了蛻膜免疫微環(huán)境的形成[10]。

 

3.3.1 蛻膜NK細胞

根據(jù)分布情況,NK細胞可分為外周NK細胞、dNK細胞和子宮NK細胞。其中,dNK細胞表達一系列特異性識別滋養(yǎng)層細胞表面HLA抗原的受體(KIR識別HLA-C,CD94/NKG2A識別HLA-EILT2識別HLA-G[14]。EVTs已被證實可以通過其表面的HLA-G分子與dNK細胞上的抑制性受體(KIR2DL4LILRB)相互作用,從而避免NK細胞溶解[16]。此外,根據(jù)細胞表面標志物的表達,dNK細胞可進一步分為兩個亞群CD56bright CD16- dNK1細胞細胞毒性低,分泌血管內(nèi)皮生長因子和生長促進因子,促進胎盤發(fā)育和胎兒生長;CD56dim CD16+ dNK2細胞分泌多種促炎細胞因子,細胞毒性高,負責檢測和抗感染[30]。由dNK1亞型主導(dǎo)的蛻膜環(huán)境,對維持母胎界面免疫相容性至關(guān)重要[31]。

 

3.3.2 蛻膜巨噬細胞

在對各種信號和刺激做出反應(yīng)時,巨噬細胞會表現(xiàn)出兩種極化形式,即M1M2,每種極化形式都具有獨特的生物學(xué)作用。M1巨噬細胞分泌促炎細胞因子,包括IL-1β、IL-6TNF-α,在調(diào)節(jié)免疫反應(yīng)對抗感染方面發(fā)揮著重要作用,但也會導(dǎo)致組織損傷。相反,M2巨噬細胞會產(chǎn)生抗炎細胞因子,包括IL-10和轉(zhuǎn)化生長因子βTGF-β。在孕早期,蛻膜巨噬細胞主要免疫抑制型的M2表型[16],參與蛻膜重塑、滋養(yǎng)細胞浸潤、血管生成和抑制T細胞活化,對維持免疫平衡和防止過度炎癥反應(yīng)至關(guān)重要

滋養(yǎng)層細胞參與蛻膜巨噬細胞的招募和分化。滋養(yǎng)層細胞通過分泌巨噬細胞集落刺激因子(M-CSF)和IL-10,誘導(dǎo)招募的CD14+單核細胞分化成M2表型[6]。這些巨噬細胞可清除凋亡的滋養(yǎng)細胞碎片抑制炎癥通路的激活,還會產(chǎn)生吲哚胺2,3-雙加氧酶,導(dǎo)致色氨酸降解并抑制T細胞活化[32]。

T細胞是適應(yīng)性免疫中不可或缺的白細胞,可以分化Th1Th2、Th17、Treg細胞等多種亞群。

Th2型細胞因子IL-4IL-5IL-10)在母胎界面產(chǎn)生,通過調(diào)節(jié)免疫反應(yīng)促進胎兒生長和著床,從而維持妊娠。相反,Th1型細胞因子,包括IFN-γ、IL-2TNF-α,會引發(fā)胎兒排斥反應(yīng),并阻礙滋養(yǎng)層細胞的增殖和分化,不利于成功妊娠。正常蛻膜免疫結(jié)構(gòu)的特點是Th1/Th2平衡向Th2型偏移[10]

Th17細胞主要分泌IL-17,在妊娠期參與針對胞外病原體防御性免疫反應(yīng)。然而,Th17介導(dǎo)的免疫過度會導(dǎo)致中性粒細胞在母胎界面肆意浸潤[33]。Treg細胞分泌與免疫耐受相關(guān)的細胞因子,并抑制Th17細胞的過度激活,從而誘導(dǎo)母胎免疫耐受[3]。研究證實,健康妊娠胎盤界面上Th1/Th2Th17/Treg的比例較低,Th2Treg細胞分泌的IL-10TGF-β等細胞因子可誘導(dǎo)母胎界面形成免疫耐受[34]

 

4. URPL的母胎界面免疫紊亂

雖然臨床上并未推薦對URPL患者進行HLA、阻斷抗體和免疫細胞免疫學(xué)檢測[35, 36],但大量研究證明它們參與了URPL的發(fā)病。本節(jié)將討論這些母胎界面免疫變化的最新研究成果

 

4.1 HLA

目前,MHC和易感基因理論被認為可以部分解釋URPL的發(fā)病機制。配偶間HLA基因位點相容性增加可能導(dǎo)致阻斷抗體無法產(chǎn)生。臨床研究發(fā)現(xiàn),共享兩個或以上HLA等位基因的夫婦,RPL風險升高[37]。一項薈萃分析表明,雖然RPL夫婦與對照夫婦在HLA-A、-B-C位點的等位基因共享方面顯著差異,RPL夫婦HLA-DR位點的等位基因共享顯著增加,表明HLA-DR相容性與RPL風險之間存在潛在關(guān)聯(lián)[38]。

此外,母體易感基因位點可能導(dǎo)致對胚胎抗原的免疫反應(yīng)不足。在一項涉及高加索人群的病例對照研究中,HLA-DRB1*03被確定為RPL的易感等位基因[39]。在臺灣人群中,HLA-DRB1*07HLA-B13的頻率較高[37]HLA DQ2/DQ8的表達可影響子宮內(nèi)膜微生物群組成,增加了RPL患者患乳糜瀉的易感性[40-42]。最近一項規(guī)模GWAS分析探討了全基因組罕見拷貝數(shù)變異對URPL易感性的影響[43],發(fā)現(xiàn)HLA-C變異與URPL風險的關(guān)系最為顯著。單倍型HLA-C*12:02、HLA-B*52:01HLA-DRB1*15:02具有明顯的保護作用。然而,cadherin11基因罕見功能缺失變異URPL風險有關(guān)。

MHC和易感基因理論外,HLA-C/HLA-GRPL的關(guān)聯(lián)也在研究中[7]HLA-C2與抑制性KIR的匹配,以及HLA-G基因14 bp插入可能與URPL有關(guān)[4445]。然而,HLA多態(tài)性與RPL患者妊娠結(jié)局的關(guān)聯(lián)仍未充分探究。目前,僅推薦對生育男嬰后出現(xiàn)繼發(fā)性RPL的北歐婦女,進行HLA II類分型(HLA-DRB1*15:01HLA-DRB1*07HLA-DQB1*05:01/05:2,以評估預(yù)后[35]。

 

4.2 阻斷抗體

一項研究顯示,成功妊娠的RPL婦女阻斷抗體陽性率(82.4%)明顯高于流產(chǎn)組10%)。母體混合淋巴細胞反應(yīng)(MLR)阻斷因子針對精子中滋養(yǎng)層-淋巴細胞交叉反應(yīng)抗原(TLX而產(chǎn)生,與HLA分子和滋養(yǎng)層抗原具有交叉反應(yīng)性,附著于滋養(yǎng)層細胞上的Fc片段受體,可保護胚胎免受免疫攻擊[8]。此外,研究發(fā)現(xiàn)MLR阻斷抗體主要屬于免疫球蛋白G-3亞類,在妊娠期間自然產(chǎn)生,也可通過RPL婦女免疫治療誘導(dǎo)產(chǎn)生,進而促進成功妊娠[46]。然而,Jablonowska等發(fā)現(xiàn),妊娠前阻斷抗體陽性RPL患者的妊娠結(jié)局無關(guān)[47]。盡管目前臨床實踐中并不常規(guī)檢測阻斷抗體,但在大多數(shù)調(diào)查RPL免疫療法療效的研究中,仍將其作為常規(guī)檢測指標,用于評估治療效果[48-50]。

 

4.3 蛻膜免疫細胞

蛻膜化異常可能是許多女性URPL病例的關(guān)鍵因素。免疫細胞,如NK細胞、巨噬細胞和T細胞,在蛻膜化過程中發(fā)揮關(guān)鍵作用。研究表明,RPL患者蛻膜組織內(nèi)這些免疫細胞的組成和功能出現(xiàn)失調(diào)[51]。此外,在RPL患者的子宮內(nèi)膜中發(fā)現(xiàn)炎性體的表達明顯增加[52, 53]。目前,指南僅提及RPL應(yīng)用NK細胞檢測,但并不推薦[35]。

 

4.3.1 蛻膜NK細胞

單細胞RNA測序分析顯示,RPL患者樣本中促進胚胎發(fā)育的dNK亞群(dNK1)比例降低,而具有細胞殺傷和免疫反應(yīng)性的dNK亞群(dNK2)則顯著升高[30]。此外,CXCR4+ CD56 bright dNK細胞顯示出較低的活化和細胞毒性表型。在RPL患者中,這些細胞的數(shù)量明顯減少,促進Th2分化的能力[54]。NK細胞的活化與Tim-3的表達有關(guān)。約60%dNK細胞表達Tim-3,并增加IL-4分泌、減少TNF-α和穿孔素[55]。既往研究表明,RPL患者的Tim-3+ dNK細胞比例減少。Tim-3在妊娠期間通過影響細胞因子分泌和抑制細胞毒性,NK細胞發(fā)揮調(diào)節(jié)作用[9]。此外,腸道通透性增加可能是導(dǎo)致RPL免疫異常的機制之一[56,57]。腸道微生物群可能會通過誘導(dǎo)免疫反應(yīng)影響NK細胞功能,進一步加劇子宮內(nèi)膜免疫環(huán)境的失衡。

目前在外周血、孕前子宮內(nèi)膜或流產(chǎn)后蛻膜組織中檢測到NK細胞[5859]。然而,不同樣本來源的NK細胞亞群頻率存在顯著差異。相對而言,在子宮內(nèi)膜或蛻膜組織樣本中檢測NK細胞的準確率較高,但由于缺乏標準化檢測程序和檢測標準,并不適合臨床應(yīng)用。

 

4.3.2 蛻膜巨噬細胞

M-CSFIL-10是人類蛻膜中M2巨噬細胞的強誘導(dǎo)因子RPL患者中,血清M-CSF濃度顯著低于健康個體[60]。RPL婦女蛻膜中M1巨噬細胞的招募量大于M2巨噬細胞,與正常妊娠相反[61]。此外,RPL患者表現(xiàn)出細胞因子失衡,有利于向M1巨噬細胞極化。例如,胰島素樣生長因子II mRNA結(jié)合蛋白3RPL病例的胎盤絨毛樣本中低表達可以激活滋養(yǎng)層細胞中的NF-κB通路,抑制IL-10表達,最終促進M1巨噬細胞的極化[62]。

 

4.3.3 蛻膜T細胞

T細胞相關(guān)因素可能參與URPL發(fā)病機制,如CD4+/CD8+比率異常、CD4+ T細胞平衡向Th1偏移、Treg數(shù)量減少、免疫抑制功能減弱以及Th17細胞和Treg細胞失衡[9]。

人類蛻膜表達Galectin-9,它通過抑制T細胞活性、抑制Th1型細胞因子釋放和促進CD4+CD25+Foxp3+ Treg細胞增殖來調(diào)節(jié)免疫反應(yīng)[63]。Galectin-9具有多種生物學(xué)功能,對皮膚病變中的Th1/Th2免疫偏差有顯著影響。在RPL中,胎盤中Galectin-9的表達明顯減少,從而促進了Th1細胞的分化[64]。

最近的研究發(fā)現(xiàn),Th17Treg細胞比例失衡在URPL發(fā)揮重要作用。Th17細胞分泌的IL-17IL23可與Th1亞群協(xié)同介導(dǎo)組織炎癥和免疫反應(yīng)[3]。Wang等人發(fā)現(xiàn),在URPL患者中,Treg細胞Th17細胞活性的抑制作用減弱,表明Treg/Th17平衡向Th17占優(yōu)的方向偏移[65]。研究表明,URPL婦女外周血中CD4+ CD25+細胞的比例顯著低于正常妊娠早期婦女。此外,有報道稱URPL患者存在Treg細胞功能缺陷[66]。循環(huán)CD4+ CD25+ Foxp3+ Treg細胞數(shù)量減少,甚至可以作為有流產(chǎn)史孕婦再次流產(chǎn)風險的指標。

5. URPL的免疫療法和機制

5.1 淋巴細胞免疫療法

淋巴細胞免疫療法(lymphocyte immunotherapy,LIT)由Mowbray等人提出[67]是一種針對URPL的主動免疫療法。淋巴細胞免疫療法主要是指從男性伴侶或無血緣關(guān)系的捐獻者身上抽取靜脈血,分離淋巴細胞,然后按照特定的治療方案靜脈注射淋巴細胞。迄今為止,LIT是針對RPL研究最為廣泛的免疫干預(yù)方法。LIT可以誘導(dǎo)URPL患者產(chǎn)生保護性抗體,如父系細胞毒性抗體、MLR阻斷因子、抗獨特型抗體和酮誘導(dǎo)阻斷因子[16]。此外,LIT還能顯著降低Th1Th17細胞水平,提高Th2Treg細胞水平,從而導(dǎo)致IL-10TGFβ的表達增強,對維持妊娠期免疫耐受至關(guān)重要[68]

Liu等人發(fā)現(xiàn),LIT可顯著提高URPL患者的活產(chǎn)率,其中年齡較小和阻斷抗體陽性是LIT成功的獨立因素[49]。他們還進行了一項包括18項隨機對照試驗的薈萃分析,結(jié)果顯示在妊娠前妊娠期間給予LIT的療效優(yōu)于僅在妊娠前給予LIT。此外,次治療的劑量較低(尤其是少于1億個淋巴細胞或100毫升外周血)時,往往能取得更優(yōu)結(jié)果[69]。然而,目前關(guān)于LIT用藥劑量、途徑和時間尚未達成共識[50, 70-72]。在治療過程中,患者可能出現(xiàn)局部反應(yīng)(如注射部位發(fā)紅、壓痕甚至血源性感染[73]。目前,ESHRE指南不建議對URPL患者常規(guī)進行LIT,但阻斷抗體檢測陰性的患者可考慮接受LIT治療[3]

 

5.2 靜脈注射免疫球蛋白

靜脈注射免疫球蛋白(intravenous immunoglobulin, IVIG)是一種多克隆免疫球蛋白G的血漿品,臨床上用于治療體液免疫缺陷和自身免疫性疾病。IVIG可通過減少細胞毒性T細胞和NK細胞、維持Th1/Th2平衡以及促進免疫抑制細胞因子(包括IL-10TGF-β)的合成來調(diào)節(jié)免疫反應(yīng)[16,74]。一項研究在妊娠32周前為RPL患者注射IVIG400mg/kg4周一次),結(jié)果顯示,IVIG治療可減輕Treg細胞的衰竭表型,從而改善妊娠預(yù)后[75]。另一項針對URPL患者的臨床研究發(fā)現(xiàn),IVIG治療組(87.5%)的活產(chǎn)率高于安慰劑組(41.6%[74]。此外,繼發(fā)性RPL患者可能從IVIG治療中獲益更多[76,77]。然而,由于用藥時間和劑量的差異,研究結(jié)果存在爭議。費用高昂、潛在副作用和適應(yīng)癥不明確等也限制了IVIGRPL患者中的應(yīng)用。

 

5.3 脂肪乳治療

脂肪乳劑是一種腸外營養(yǎng)制劑抑制NK細胞功能炎性細胞因子釋放,體外研究證實其具有免疫調(diào)節(jié)特性。臨床研究證明,它對URPL反復(fù)著床失敗RIF患者有效,尤其是對NK細胞活性異常的患者[78]。一些研究提供了中等程度的證據(jù),表明靜脈注射脂肪乳劑療法可改善URPL婦女的生殖結(jié)局,尤其是活產(chǎn)率[79-81]。與IVIG相比,脂肪乳劑可能是一種更安全、更具成本效益的治療方案[82]。然而,部分研究報告了大劑量靜脈注射后的嚴重不良反應(yīng),如急性腎損傷且現(xiàn)有研究質(zhì)量不高,存在顯著異質(zhì)性。因此,仍需進一步研究以確定脂肪乳劑在臨床中的療效和安全性。

 

5.4 富血小板血漿宮腔灌注

富血小板血漿(platelet-rich plasma, PRP)是從外周血中提取的血液濃縮物,其中血小板濃度至少是基線水平的35倍。它還包括一些細胞因子,如TGF-βIL-1β[83]PRP膝關(guān)節(jié)骨關(guān)節(jié)炎和勃起功能障礙等領(lǐng)域廣泛應(yīng)用,通過調(diào)節(jié)細胞增殖、趨化和細胞因子分泌發(fā)揮重要作用。Li等人發(fā)現(xiàn),在不明原因RIF患者中,PRP組的活產(chǎn)率、臨床妊娠率和著床率顯著高于安慰劑組[84]。一項網(wǎng)絡(luò)薈萃分析也顯示,宮腔內(nèi)注射人絨毛膜促性腺激素、粒細胞集落刺激因子、外周血單核細胞和PRP能顯著改善RIF患者的臨床妊娠和活產(chǎn),其中PRP的效果最[85]。然而,關(guān)于PRPURPL患者中的應(yīng)用,相關(guān)研究較為有限

 

5.5 免疫抑制劑

環(huán)孢素ACyclosporine A, CsA一種免疫抑制劑,妊娠器官移植患者中被證實是安全的[86]。此外,新生兒出生后的隨訪顯示,其生長發(fā)育、免疫功能其他方面均無異常[87]。在妊娠早期使用低劑量CsA可促進胎盤界面滋養(yǎng)層細胞的增殖、遷移和侵襲,從而促進胚胎著床[88]。同時,CsA可降低RPL患者的Th1/Th2比率,促進IL-10和其他Th2型細胞因子的分泌,維持母胎免疫耐受[89]。Ling等人的研究進一步表明,小劑量CSA可提高URPL患者的活產(chǎn)率,且出現(xiàn)母體或新生兒相關(guān)并發(fā)癥[90]。

他克莫司也是一種常用的免疫抑制劑。在一項隨機對照試驗中,對于外周血中IL-33/ST2水平升高或Th1/Th2細胞比例升高的難治性RPL患者,他克莫司顯示出潛在治療價值[91]在另一項針對RIF患者的試驗中,從胚胎移植前2天開始給予他克莫司1-3 mg/d,持續(xù)至妊娠試驗16,顯著改善了妊娠結(jié)局[92]。西羅莫司又稱雷帕霉素)最初于20世紀70年代作為低毒性抗真菌藥物開發(fā),后因具有免疫抑制作用用于預(yù)防器官移植排異反應(yīng)[93]。在小鼠模型中,西羅莫司逆轉(zhuǎn)Treg細胞數(shù)量下降,提示其Treg水平下降的URPL患者具有潛在治療價值[94]。鑒于CsA對滋養(yǎng)細胞具有劑量依賴性雙重作用,且對后代的長期影響尚不明確,適當?shù)膭┝亢蜆藴驶闹委煏r間對確保成功妊娠和減少不良反應(yīng)至關(guān)重要,這一點同樣適用于其他免疫抑制劑。目前,指南僅建議確診自身免疫性疾病RPL患者使用免疫抑制劑[35, 36]。

 

5.6 生物制劑

TNF-α是全身炎癥的標志物,在RPL患者的外周血漿中高表達[95]TNF-α抑制劑是一類新型生物制劑,主要治療類風濕性關(guān)節(jié)炎、炎癥性腸病和其他以慢性炎癥為特征的疾病。一項針對75RPL/RIF患者的回顧性研究發(fā)現(xiàn),阿達木單抗一種TNF-α抑制劑)聯(lián)合IVIG治療能有效提高活產(chǎn)率且效果優(yōu)于單獨使用抗凝療法(肝素和阿司匹林)[96]

依那西普是另一種TNF-α抑制劑,常用作抗風濕藥。一項隨機對照試驗證實依那西普難治性URPL患者的有效性。在妊娠第4周至第10周,依那西普能顯著降低患者的血漿TNF-α水平和pNK細胞活性[97, 98]。對于現(xiàn)有治療方案無效的難治性URPL患者,依那西普可能是一種選擇。然而,由于缺乏高質(zhì)量研究支持,其在妊娠期的安全性尚未確定。

 

5.7 糖皮質(zhì)激素

合成皮質(zhì)類固醇(如潑尼松)對Th1/Th2細胞因子和NK細胞有免疫抑制作用,被認為是潛在的治療方法[9]。研究表明,潑尼松使用與RPL患者uNK細胞水平下降有關(guān)[99]。因此,相比于uNK細胞計數(shù)正常的患者uNK細胞計數(shù)異常的URPL患者在接受糖皮質(zhì)激素治療后,生育結(jié)局有所改善[99100]。然而,長期或大劑量使用皮質(zhì)類固醇會增加患者罹患高血壓和糖尿病的風險。目前,糖皮質(zhì)激素治療的最佳時機、劑量和療程仍在探索中,亟需開展大樣本隨機對照研究以制定循證指南。此外,進一步研究URPL患者的免疫生物標志物,對于指導(dǎo)糖皮質(zhì)激素治療至關(guān)重要[99, 101, 102]。

 

5.8 維生素D

維生素D屬于類固醇激素,具有抗炎特性,通過抑制T細胞增殖和細胞因子合成,下調(diào)IL-2、IFN-γTNF-α炎癥基因轉(zhuǎn)錄[16]。維生素D不足與流產(chǎn)風險增加有關(guān),補充維生素D可能有助于預(yù)防RPL[103-105]。在RPL患者中,維生素D不足者的外周血中CD56+細胞毒性NK細胞活性Th17/Treg比率顯著高于維生素D充足者[106107]。一項臨床研究發(fā)現(xiàn),URPL患者補充維生素D降低外周血中Th、BNK細胞以及IL2TNF-αIFN-γ的水平,同時增加IL-4IL-10[108]。這些變化可能有助于促進成功妊娠。此外,無論是否患有RPL,維生素D補充劑已成為孕婦的常用處方。

 

5.9 孕酮

孕酮對維持正常妊娠至關(guān)重要,作用機制包括促進免疫耐受、增加子宮血流量和增強子宮內(nèi)膜容受性。體外實驗發(fā)現(xiàn),孕酮可下調(diào)Th1細胞釋放的細胞因子,同時促進Th2細胞分泌細胞因子[109]。此外,酮還能激活淋巴細胞合成孕酮誘導(dǎo)的阻斷因子,該因子能介導(dǎo)母胎界面的免疫耐受,抑制NK細胞的活性,從而對胎兒產(chǎn)生保護作用[110]。此外,多項研究表明,孕酮可誘導(dǎo)HLA-G的表達[111]。

多項臨床研究調(diào)查了酮在URPL患者中的作用,結(jié)果存在爭議[112-116]。一項薈萃分析表明,補充酮治療可能會降低URPL患者后續(xù)妊娠的流產(chǎn)率[117]。然而,一項836名婦女進行的多中心隨機試驗發(fā)現(xiàn),在妊娠試驗呈陽性后,使用陰道微粒化酮的URPL婦女與使用安慰劑的婦女在活產(chǎn)率方面無顯著差異[113]。目前,國際婦產(chǎn)科聯(lián)盟不建議URPL患者在妊娠試驗呈陽性時開始使用陰道天然酮。相反,ESHRE指南建議,從黃體期開始服用酮,而不是等到妊娠試驗呈陽性后再服用,可能獲益更多[35]??诜铣?/span>酮可能有一定效果,但需要大量安慰劑對照試驗來確定其最佳使用時機和劑量[118]。

 

5.10 粒細胞集落刺激因子

蛻膜細胞釋放的G-CSF支持中性粒細胞的增殖和分化。有證據(jù)表明,G-CSF具有免疫調(diào)節(jié)特性,能夠誘導(dǎo)外周Treg細胞和髓源性抑制細胞的功能。它還能增強蛻膜巨噬細胞對血管內(nèi)皮生長因子的表達,促進血管重塑[119]。此外,體內(nèi)實驗證明,給予G-CSF可改善子宮內(nèi)膜厚度和卵母細胞質(zhì)量,可能促進胚胎著床[120]。在一項涉及68URPL婦女的單中心研究中,G-CSF治療組的活產(chǎn)率(82.8%)明顯高于安慰劑組(48.5%[121]。此外,與IVIG或抗凝治療相比,G-CSF可能是一種更有效的治療方案[122]。然而,Eapen等人發(fā)現(xiàn),rhG-CSF組的不良反應(yīng)發(fā)生率(68.4% vs. 58.1%)和新生兒先天畸形率(2.1% vs. 2.0%)更高[123]。盡管G-CSF有治療RPL的潛力,但在推薦用于臨床實踐之前,需在不同人群中進行更多高質(zhì)量的試驗以確認其療效。

 

6. 結(jié)論

母胎界面的免疫失衡是導(dǎo)致URPL的重要潛在機制。胎兒滋養(yǎng)層細胞、母體蛻膜基質(zhì)細胞和免疫細胞共同組成了一個復(fù)雜、有序、動態(tài)變化的分子調(diào)控網(wǎng)絡(luò)。事實上,這些成分的功能障礙或干擾都有可能導(dǎo)致RPL的發(fā)生。為了改善URPL患者的妊娠結(jié)局,多種免疫療法被提出并應(yīng)用,如LIT、IVIG、脂肪乳劑等。然而,由于研究人群和方法的異質(zhì)性,研究結(jié)果尚未定論。未來需要開展大樣本、多中心研究,為URPL患者的免疫療法提供高質(zhì)量的證據(jù)。

 

參考文獻

1.Practice Committee of the American Society for Reproductive Medicine, “Definitions of Infertility and Recurrent Pregnancy Loss: A Committee Opinion,” Fertility and Sterility 113, no. 3 (2020): 533–535.

2. ESHRE Guideline Group on RPL, R. Bender Atik, O. B. Christiansen, et al., “ESHRE Guideline: Recurrent Pregnancy Loss: An Update in 2022,” Human Reproduction Open 2023, no. 1 (2023): hoad002.

3. E. Dimitriadis, E. Menkhorst, S. Saito, W. H. Kutteh, and J. J. Brosens, “Recurrent Pregnancy Loss,” Nature Reviews Disease Primers 6, no. 1 (2020): 98.

4. M. M. van Dijk, A. M. Kolte, J. Limpens, et al., “Recurrent Pregnancy Loss: Diagnostic Workup After Two or Three Pregnancy Losses? A Systematic Review of the Literature and Meta-Analysis,” Human Reproduction Update 26, no. 3 (2020): 356–367.

5. H. Liu, X. X. Lin, X. B. Huang, et al., “Systemic Characterization of Novel Immune Cell Phenotypes in Recurrent Pregnancy Loss,” Frontiers in Immunology 12 (2021): 657552.

6. G. Mor, P. Aldo, and A. B. Alvero, “The Unique Immunological and Microbial Aspects of Pregnancy,” Nature Reviews Immunology 17, no. 8 (2017): 469–482.

7. I. Cuadrado-Torroglosa, J. A. García-Velasco, and D. Alecsandru, “Maternal-Fetal Compatibility in Recurrent Pregnancy Loss,” Journal of Clinical Medicine 13, no. 8 (2024): 2379.

8. X. Yang, C. Zhang, G. Chen, C. Sun, and J. Li, “Antibodies: The Major Participants in Maternal-Fetal Interaction,” Journal of Obstetrics and Gynaecology Research 45, no. 1 (2019): 39–46, https://pubmed.ncbi. nlm.nih.gov/30338894/.

9. N. Yu, J. Kwak-Kim, and S. Bao, “Unexplained Recurrent Pregnancy Loss: Novel Causes and Advanced Treatment,” Journal of Reproductive Immunology 155 (2023): 103785.

10. S. E. Ander, M. S. Diamond, and C. B. Coyne, “Immune Responses at the Maternal-fetal Interface,” Science Immunology 4, no. 31 (2019): eaat6114.

11. A. Moffett and F. Colucci, “Uterine NK Cells: Active Regulators at the Maternal-Fetal Interface,” Journal of Clinical Investigation 124, no. 5 (2014): 1872–1879.

12. E. R. Norwitz, E. A. Bonney, V. V. Snegovskikh, et al., “Molecular Regulation of Parturition: The Role of the Decidual Clock,” Cold Spring Harbor Perspectives Medicine 5, no. 11 (2015): a023143.

13. Y. Gnainsky, I. Granot, P. Aldo, et al., “Biopsy-Induced Inflammatory Conditions Improve Endometrial Receptivity: The Mechanism of Action,” Reproduction (Cambridge, England) 149, no. 1 (2015): 75–85.

14. C. Ticconi, A. Pietropolli, N. Di Simone, E. Piccione, and A. Fazleabas, “Endometrial Immune Dysfunction in Recurrent Pregnancy Loss,” International Journal of Molecular Sciences 20, no. 21 (2019): 5332.

15. M. M. Faas and P. de Vos, “Uterine NK Cells and Macrophages in Pregnancy,” Placenta 56 (2017): 44–52.

16. D. Guan, W. Sun, M. Gao, Z. Chen, and X. Ma, “Immunologic Insights in Recurrent Spontaneous Abortion: Molecular Mechanisms and Therapeutic Interventions,” Biomedicine & Pharmacotherapy 177 (2024): 117082.

17. L. F. Edey, K. P. O’Dea, B. R. Herbert, R. Hua, S. N. Waddington, D. A. MacIntyre, et al., “The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse,” Biology of Reproduction 95, no. 6 (2016): 125.

18. T. M. Lindstr?m and P. R. Bennett, “The Role of Nuclear Factor Kappa B in Human Labour,” Reproduction (Cambridge, England) 130, no. 5 (2005): 569–581.

19. V. Garcia-Flores, R. Romero, A. L. Tarca, et al., “Deciphering MaternalFetal Cross-Talk in the Human Placenta During Parturition Using SingleCell RNA Sequencing,” Science Translational Medicine 16, no. 729 (2024): eadh8335.

20. T. Tilburgs, S. A. Scherjon, and F. H. J. Claas, “Major Histocompatibility Complex (MHC)-Mediated Immune Regulation of Decidual Leukocytes at the Fetal-Maternal Interface,” Journal of Reproductive Immunology 85, no. 1 (2010): 58–62.

21. P. Parham, “MHC Class I Molecules and KIRs in Human History, Health and Survival,” Nature Reviews Immunology 5, no. 3 (2005): 201–214.

22. X. X. Lin, Y. M. Xie, S. J. Zhao, C. Y. Liu, G. Mor, and A. H. Liao, “Human Leukocyte Antigens: The Unique Expression in Trophoblasts and Their Crosstalk With Local Immune Cells,” International Journal of Biological Sciences 18, no. 10 (2022): 4043–4052.

23. A. M. Sharkey, L. Gardner, S. Hiby, et al., “Killer Ig-Like Receptor Expression in Uterine NK Cells Is Biased Toward Recognition of HLA-C and Alters With Gestational Age,” Journal of Immunology 181, no. 1 (2008): 39–46

24. T. Tilburgs, S. A. Scherjon, B. J. van der Mast, et al., “Fetal-Maternal HLA-C Mismatch Is Associated With Decidual T Cell Activation and Induction of Functional T Regulatory Cells,” Journal of Reproductive Immunology 82, no. 2 (2009): 148–157.

25. M. Gumá, L. K. Busch, L. I. Salazar-Fontana, et al., “The CD94/NKG2C Killer Lectin-Like Receptor Constitutes an Alternative Activation Pathway for a Subset of CD8+ T Cells,” European Journal of Immunology 35, no. 7 (2005): 2071–2080.

26. C. H. Langkilde, L. L. Nilsson, N. J?rgensen, et al., “Variation in the HLA-F Gene Locus With Functional Impact Is Associated With Pregnancy Success and Time-to-Pregnancy After Fertility Treatment,” Human Reproduction 35, no. 3 (2020): 705–717.

27. W. Guo, L. Fang, B. Li, X. Xiao, S. Chen, J. Wang, et al., “Decreased Human Leukocyte Antigen-G Expression by miR-133a Contributes to Impairment of Proinvasion and Proangiogenesis Functions of Decidual NK Cells,” Frontiers in Immunology 8 (2017): 741.

28. R. Apps, L. Gardner, A. M. Sharkey, N. Holmes, and A. Moffett, “A Homodimeric Complex of HLA-G on Normal Trophoblast Cells Modulates Antigen-Presenting Cells via LILRB1,” European Journal of Immunology 37, no. 7 (2007): 1924–1937.

29. R. E. Rocklin, J. L. Kitzmiller, and M. R. Garvoy, “Maternal-Fetal Relation. II. Further Characterization of an Immunologic Blocking Factor That Develops During Pregnancy,” Clinical Immunology and Immunopathology 22, no. 3 (1982): 305–315.

30. C. Huang, Y. Zeng, and W. Tu, “Single-Cell RNA Sequencing Deciphers Immune Landscape of Human Recurrent Miscarriage,” Genomics, Proteomics & Bioinformatics 19, no. 2 (2021): 169–171.

31. K. Vinketova, M. Mourdjeva, and T. Oreshkova, “Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity,” Journal of Pregnancy 2016 (2016): 8689436.

32. E. Grozdics, L. Berta, A. Bajnok, et al., “B7 Costimulation and Intracellular Indoleamine-2,3-Dioxygenase (IDO) Expression in Peripheral Blood of Healthy Pregnant and Non-Pregnant Women,” BMC Pregnancy Childbirth 14 (2014): 306.

33. W. Wang, N. Sung, A. Gilman-Sachs, and J. Kwak-Kim, “T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells,” Frontiers in Immunology 11 (2020): 2025.

34. M. Esparvarinha, S. Madadi, L. Aslanian-Kalkhoran, et al., “Dominant Immune Cells in Pregnancy and Pregnancy Complications: T Helper Cells (TH1/TH2, TH17/Treg cells), NK Cells, MDSCs, and the Immune Checkpoints,” Cell Biology International 47, no. 3 (2023): 507–519.

35. R. P. L. ESHRE Guideline Group on, R. Bender Atik, O. B. Christiansen, et al., “ESHRE Guideline: Recurrent Pregnancy Loss: An Update in 2022,” Human Reproduction Open 2023, no. 1 (2023): hoad002.

36. L. Regan, R. Rai, S. Saravelos, et al., “Recurrent Miscarriage GreenTop Guideline No. 17,” BJOG – An International Journal of Obstetrics & Gynaecology 130, no. 12 (2023): e9–39.

37. M. Aruna, T. Nagaraja, S. Andal Bhaskar, S. Tarakeswari, A. G. Reddy, K. Thangaraj, et al., “Novel Alleles of HLA-DQ and -DR Loci Show Association With Recurrent Miscarriages Among South Indian Women,” Human Reproduction 26, no. 4 (2011): 765–774.

38. H. Beydoun and A. F. Saftlas, “Association of Human Leucocyte Antigen Sharing With Recurrent Spontaneous Abortions,” Tissue Antigens 65, no. 2 (2005): 123–135.

39. C. Kruse, R. Steffensen, K. Varming, and O. B. Christiansen, “A Study of HLA-DR and -DQ Alleles in 588 Patients and 562 Controls Confirms That HLA-DRB1*03 Is Associated With Recurrent Miscarriage,” Human Reproduction 19, no. 5 (2004): 1215–1221.

40. S. D’Ippolito, A. Gasbarrini, R. Castellani, S. Rocchetti, L. G. Sisti, G. Scambia, et al., “Human Leukocyte Antigen (HLA) DQ2/DQ8 Prevalence in Recurrent Pregnancy Loss Women,” Autoimmunity Reviews 15, no. 7 (2016): 638–643

41. S. D’Ippolito, F. Di Nicuolo, M. Papi, R. Castellani, V. Palmieri, V. Masciullo, et al., “Expression of Pinopodes in the Endometrium From Recurrent Pregnancy Loss Women. Role of Thrombomodulin and Ezrin,” Journal of Clinical Medicine 9, no. 8 (2020): 2634.

42. L. Masucci, S. D’Ippolito, F. De Maio, G. Quaranta, R. Mazzarella, D. M. Bianco, et al., “Celiac Disease Predisposition and Genital Tract Microbiota in Women Affected by Recurrent Pregnancy Loss,” Nutrients 15, no. 1 (2023): 221.

43. K. Sonehara, Y. Yano, T. Naito, et al., “Common and Rare Genetic Variants Predisposing Females to Unexplained Recurrent Pregnancy Loss,” Nature Communications 15, no. 1 (2024): 5744.

44. X. Wang, W. Jiang, and D. Zhang, “Association of 14-bp Insertion/Deletion Polymorphism of HLA-G Gene with Unexplained Recurrent Spontaneous Abortion: A Meta-Analysis,” Tissue Antigens 81, no. 2 (2013): 108–115.

45. R. M. Faridi and S. Agrawal, “Killer Immunoglobulin-Like Receptors (KIRs) and HLA-C Allorecognition Patterns Implicative of Dominant Activation of Natural Killer Cells Contribute to Recurrent Miscarriages,” Human Reproduction 26, no. 2 (2011): 491–497.

46. M. K. Pandey, V. Saxena, and S. Agrawal, “Characterization of Mixed Lymphocyte Reaction Blocking Antibodies (MLR-Bf) in Human Pregnancy,” BMC Pregnancy Childbirth 3, no. 1 (2003): 2.

47. B. Jablonowska, M. Palfi, J. Ernerudh, S. Kjellberg, and A. Selbing, “Blocking Antibodies in Blood From Patients With Recurrent Spontaneous Abortion in Relation to Pregnancy Outcome and Intravenous Immunoglobulin Treatment,” American Journal of Reproductive Immunology 45, no. 4 (2001): 226–231.

48. J. Chen, B. Liu, Y. Zhang, et al., “Effect of Immunotherapy on Patients With Unexplained Recurrent Spontaneous Abortion,” Annals of Palliative Medicine 9, no. 5 (2020): 2545–2550.

49. S. Liu, X. Gu, and R. Weng, “Clinical Effect of Lymphocyte Immunotherapy On Patients With Unexplained Recurrent Spontaneous Abortion,” Immune, Inflammation Diseases 9, no. 4 (2021): 1272–1278.

50. J. L. Chen, J. M. Yang, Y. Z. Huang, and Y. Li, “Clinical Observation of Lymphocyte Active Immunotherapy in 380 Patients With Unexplained Recurrent Spontaneous Abortion,” International Immunopharmacology 40 (2016): 347–350.

51. C. Ticconi, N. Di Simone, L. Campagnolo, and A. Fazleabas, “Clinical Consequences of Defective Decidualization,” Tissue & Cell 72 (2021): 101586.

52. S. D’Ippolito, C. Tersigni, R. Marana, F. Di Nicuolo, R. Gaglione, E. D. Rossi, et al., “Inflammosome in the Human Endometrium: Further Step in the Evaluation of the “Maternal Side”,” Fertility and Sterility 105, no. 1 (2016): 111–118.

53. F. Di Nicuolo, S. D’Ippolito, R. Castellani, E. D. Rossi, V. Masciullo, M. Specchia, et al., “Effect of Alpha-Lipoic Acid and Myoinositol On Endometrial Inflammasome From Recurrent Pregnancy Loss Women,” American Journal of Reproductive Immunology 82, no. 3 (2019): e13153.

54. Y. Tao, Y. H. Li, D. Zhang, et al., “Decidual CXCR4+ CD56bright NK Cells as a Novel NK Subset in Maternal-Foetal Immune Tolerance to Alleviate Early Pregnancy Failure,” Clinical and Translational Medicine 11, no. 10 (2021): e540.

55. Y. Li, D. Li, and M. Du, “TIM-3: A Crucial Regulator of NK Cells in Pregnancy,” Cellular & Molecular Immunology 14, no. 11 (2017): 948–950.

56. H. S. Oz, J. L. Ebersole, and W. J. S. de Villiers, “The Macrophage Pattern Recognition Scavenger Receptors SR-A and CD36 Protect Against Microbial Induced Pregnancy Loss,” Inflammation Research 60, no. 1 (2011): 93–97.

57. C. Tersigni, S. D’Ippolito, F. Di Nicuolo, R. Marana, V. Valenza, V. Masciullo, et al., “Recurrent Pregnancy Loss Is Associated to Leaky Gut: A Novel Pathogenic Model of Endometrium Inflammation?,” Journal of Translational Medicine 16, no. 1 (2018): 102

58. K. Katano, S. Suzuki, Y. Ozaki, N. Suzumori, T. Kitaori, and M. Sugiura-Ogasawara, “Peripheral Natural Killer Cell Activity as a Predictor of Recurrent Pregnancy Loss: A Large Cohort Study,” Fertility and Sterility 100, no. 6 (2013): 1629–1634.

59. E. Tuckerman, S. M. Laird, A. Prakash, and T. C. Li, “Prognostic Value of the Measurement of Uterine Natural Killer Cells in the Endometrium of Women With Recurrent Miscarriage,” Human Reproduction 22, no. 8 (2007): 2208–2213.

60. K. Katano, Y. Matsumoto, M. Ogasawara, et al., “Low Serum M-CSF Levels Are Associated With Unexplained Recurrent Abortion,” American Journal of Reproductive Immunology 38, no. 1 (1997): 1–5.

61. Y. Zhang, L. Ma, X. Hu, J. Ji, G. Mor, and A. Liao, “The Role of the PD-1/PD-L1 Axis in Macrophage Differentiation and Function During Pregnancy,” Human Reproduction 34, no. 1 (2019): 25–36.

62. Y. Zhang, F. Dai, D. Yang, et al., “Deletion of Insulin-Like Growth Factor II mRNA-Binding Protein 3 Participates in the Pathogenesis of Recurrent Spontaneous Abortion by Inhibiting IL-10 Secretion and Inducing M1 Polarization,” International Immunopharmacology 114 (2023): 109473.

63. R. E. Ramhorst, L. Giribaldi, L. Fraccaroli, et al., “Galectin-1 Confers Immune Privilege to Human Trophoblast: Implications in Recurrent Fetal Loss,” Glycobiology 22, no. 10 (2012): 1374–1386.

64. M. He, M. Jiang, Y. Zhou, et al., “Impaired Gal-9 Dysregulates the PBMC-Induced Th1/Th2 Imbalance in Abortion-Prone Matings,” Journal of Immunology Research 2018 (2018): 9517842.

65. W. J. Wang, C. F. Hao, Q. L. Qu, X. Wang, L. H. Qiu, and Q. D. Lin, “The Deregulation of Regulatory T Cells on Interleukin-17-Producing T Helper Cells in Patients With Unexplained Early Recurrent Miscarriage,” Human Reproduction (Oxford, England) 25, no. 10 (2010): 2591–2596, https://pubmed.ncbi.nlm.nih.gov/20685755/.

66. M. Liu, X. Zhen, H. Song, et al., “Low-Dose Lymphocyte Immunotherapy Rebalances the Peripheral Blood Th1/Th2/Treg Paradigm in Patients With Unexplained Recurrent Miscarriage,” Reproductive Biology and Endocrinology: RB&E 15, no. 1 (2017): 95.

67. J. F. Mowbray, C. Gibbings, H. Liddell, P. W. Reginald, J. L. Underwood, and R. W. Beard, “Controlled Trial of Treatment of Recurrent Spontaneous Abortion by Immunisation With Paternal Cells,” Lancet 1, no. 8435 (1985): 941–943.

68. J. R. Wilczyński, P. Radwan, H. Tchórzewski, and M. Banasik, “Immunotherapy of Patients With Recurrent Spontaneous Miscarriage and Idiopathic Infertility: Does the Immunization-Dependent Th2 Cytokine Overbalance Really Matter?,” Archivum Immunologiae Et Therapiae Experimentalis 60, no. 2 (2012): 151–160.

69. Z. Liu, H. Xu, X. Kang, T. Wang, L. He, and A. Zhao, “Allogenic Lymphocyte Immunotherapy for Unexplained Recurrent Spontaneous Abortion: A Meta-Analysis,” American Journal of Reproductive Immunology 76, no. 6 (2016): 443–453.

70. L. F. Wong, T. F. Porter, and J. R. Scott, “Immunotherapy for Recurrent Miscarriage,” Cochrane Database of Systematic Reviews (Online) 2014, no. 10 (2014): CD000112.

71. C. Achilli, M. Duran-Retamal, W. Saab, P. Serhal, and S. Seshadri, “The Role of Immunotherapy in In Vitro Fertilization and Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis,” Fertility and Sterility 110, no. 6 (2018): 1089–1100.

72. P. D. Francisco, C. S. C. Tan-Lim, and M. S. L. Agcaoili-De Jesus, “Efficacy of Lymphocyte Immunotherapy in the Treatment of Recurrent Pregnancy Loss From Alloimmunity: A Systematic Review and MetaAnalysis,” American Journal of Reproductive Immunology 88, no. 4 (2022): e13605.

73. M. B. Cavalcante, M. Sarno, E. Araujo Júnior, F. Da Silva Costa, and R. Barini, “Lymphocyte Immunotherapy in the Treatment of Recurrent Miscarriage: Systematic Review and Meta-Analysis,” Archives of Gynecology and Obstetrics 295, no. 2 (2017): 511–518.

74. M. Ahmadi, S. Abdolmohammadi-Vahid, M. Ghaebi, et al., “Effect of Intravenous Immunoglobulin on Th1 and Th2 Lymphocytes and Improvement of Pregnancy Outcome in Recurrent Pregnancy Loss (RPL),” Biomedicine & Pharmacotherapy 92 (2017): 1095–1102.

75. S. Jafarzadeh, M. Ahmadi, S. Dolati, et al., “Intravenous Immunoglobulin G Treatment Increases Live Birth Rate in Women With Recurrent Miscarriage and Modulates Regulatory and Exhausted Regulatory T Cells Frequency and Function,” Journal of Cellular Biochemistry 120, no. 4 (2019): 5424–5434.

76. S. W. Wang, S. Y. Zhong, L. J. Lou, Z. F. Hu, H. Y. Sun, and H. Y. Zhu, “The Effect of Intravenous Immunoglobulin Passive Immunotherapy on Unexplained Recurrent Spontaneous Abortion: A Meta-Analysis,” Reproductive Biomedicine Online 33, no. 6 (2016): 720–736.

77. M. D. Stephenson, W. H. Kutteh, S. Purkiss, et al., “Intravenous Immunoglobulin and Idiopathic Secondary Recurrent Miscarriage: A Multicentered Randomized Placebo-Controlled Trial,” Human Reproduction 25, no. 9 (2010): 2203–2209.

78. P. Canella, R. Barini, P. O. Carvalho, and D. S. Razolli, “Lipid Emulsion Therapy in Women With Recurrent Pregnancy Loss and Repeated Implantation Failure: The Role of Abnormal Natural Killer Cell Activity,” Journal of Cellular and Molecular Medicine 25, no. 5 (2021): 2290–2296, https://pubmed.ncbi.nlm.nih.gov/33544456/.

79. P. Kumar, K. Marron, and C. Harrity, “Intralipid Therapy and Adverse Reproductive Outcome: Is There Any Evidence?,” Reproduction and Fertility 2, no. 3 (2021): 173–186.

80. G. J. Marchand, A. T. Masoud, H. Ulibarri, et al., “Effect of a 20% Intravenous Fat Emulsion Therapy On Pregnancy Outcomes in Women With RPL or RIF Undergoing IVF/ICSI: A Systematic Review and MetaAnalysis,” Journal of Clinical and Translational Research 9, no. 4 (2023): 236–245.

81. L. Pla?ais, K. Kolanska, Y. B. Kraiem, et al., “Intralipid Therapy for Unexplained Recurrent Miscarriage and Implantation Failure: CaseSeries and Literature Review,” European Journal of Obstetrics, Gynecology, and Reproductive Biology 252 (2020): 100–104, https://pubmed.ncbi.nlm. nih.gov/32592916/.

82. L. Meng, J. Lin, L. Chen, et al., “Effectiveness and Potential Mechanisms of Intralipid in Treating Unexplained Recurrent Spontaneous Abortion,” Archives of Gynecology and Obstetrics 294, no. 1 (2016): 29–39.

83. F. I. Sharara, L. L. Lelea, S. Rahman, J. S. Klebanoff, and G. N. Moawad, “A Narrative Review of Platelet-Rich Plasma (PRP) in Reproductive Medicine,” Journal of Assisted Reproduction and Genetics 38, no. 5 (2021): 1003–1012.

84. M. Li, Y. Kang, Q. Wang, and L. Yan, “Efficacy of Autologous Intrauterine Infusion of Platelet-Rich Plasma in Patients With Unexplained Repeated Implantation Failures in Embryo Transfer: A Systematic Review and Meta-Analysis,” Journal of Clinical Medicine 11, no. 22 (2022): 6753.

85. Q. Xie, X. Quan, Y. Lan, and X. Yang, “Uterine Infusion Strategies for Infertile Patients With Recurrent Implantation Failure: A Systematic Review and Network Meta-Analysis,” Reproductive Biology and Endocrinology : RB&E 22, no. 1 (2024): 44, https://pubmed.ncbi.nlm.nih. gov/38627790/.

86. N. Zaffar, E. Soete, S. Gandhi, P. Sayyar, T. Van Mieghem, and R. D’Souza, “Pregnancy Outcomes Following Single and Repeat Liver Transplantation: An International 2-Center Cohort,” Liver Transplantation 24, no. 6 (2018): 769–778.

87. R. Cimaz, E. Meregalli, M. Biggioggero, et al., “Alterations in the Immune System of Children From Mothers Treated With Immunosuppressive Agents During Pregnancy,” Toxicology Letters 149, no. 1–3 (2004): 155–162.

88. N. Yu, Y. Liang, H. Zhu, H. Mo, and H. Pei, “CsA Promotes XIST Expression to Regulate Human Trophoblast Cells Proliferation and Invasion Through miR-144/Titin Axis,” Journal of Cellular Biochemistry 118, no. 8 (2017): 2208–2218

89. R. Azizi, M. Ahmadi, S. Danaii, et al., “Cyclosporine A Improves Pregnancy Outcomes in Women With Recurrent Pregnancy Loss and Elevated Th1/Th2 Ratio,” Journal of Cellular Physiology 234, no. 10 (2019): 19039–19047.

90. Y. Ling, Y. Huang, C. Chen, J. Mao, and H. Zhang, “Low Dose Cyclosporin A Treatment Increases Live Birth Rate of Unexplained Recurrent Abortion—Initial Cohort Study,” Clinical and Experimental Obstetrics and Gynecology 44, no. 2 (2017): 230–235.

91. J. Liu, M. Li, J. Fu, et al., “Tacrolimus Improved the Pregnancy Outcomes of Patients With Refractory Recurrent Spontaneous Abortion and Immune Bias Disorders: A Randomized Controlled Trial,” European Journal of Clinical Pharmacology 79, no. 5 (2023): 627– 634.

92. K. Nakagawa, J. Kwak-Kim, K. Ota, et al., “Immunosuppression With Tacrolimus Improved Reproductive Outcome of Women With Repeated Implantation Failure and Elevated Peripheral Blood TH1/TH2 Cell Ratios,” American Journal of Reproductive Immunology 73, no. 4 (2015): 353–361.

93. J. Li, S. G. Kim, and J. Blenis, “Rapamycin: One Drug, Many Effects,” Cell Metabolism 19, no. 3 (2014): 373–379, https://pubmed.ncbi.nlm.nih. gov/24508508/.

94. G. D. Royster, J. C. Harris, A. Nelson, et al., “Rapamycin Corrects T Regulatory Cell Depletion and Improves Embryo Implantation and Live Birth Rates in a Murine Model,” Reproductive Sciences (Thousand Oaks, Calif) 26, no. 12 (2019): 1545–1556, https://pubmed.ncbi.nlm.nih. gov/30782087/.

95. J. Alijotas-Reig, E. Esteve-Valverde, R. Ferrer-Oliveras, E. Llurba, and J. M. Gris, “Tumor Necrosis Factor-Alpha and Pregnancy: Focus on Biologics. An Updated and Comprehensive Review,” Clinical Reviews in Allergy and Immunology 53, no. 1 (2017): 40–53.

96. S. M. M. Verstappen, Y. King, K. D. Watson, D. P. M. Symmons, and K. L. Hyrich, BSRBR Control Centre Consortium, BSR Biologics Register, “Anti-TNF Therapies and Pregnancy: Outcome of 130 Pregnancies in the British Society for Rheumatology Biologics Register,” Annals of the Rheumatic Diseases 70, no. 5 (2011): 823–826.

97. M. Jerzak, M. Ohams, A. Górski, and W. Baranowski, “Etanercept Immunotherapy in Women With a History of Recurrent Reproductive Failure,” Ginekologia Polska 83, no. 4 (2012): 260–264.

98. J. Fu, L. Li, L. Qi, and L. Zhao, “A Randomized Controlled Trial of Etanercept in the Treatment of Refractory Recurrent Spontaneous Abortion With Innate Immune Disorders,” Taiwanese Journal of Obstetrics and Gynecology 58, no. 5 (2019): 621–625.

99. S. Cooper, S. M. Laird, N. Mariee, T. C. Li, and M. Metwally, “The Effect of Prednisolone on Endometrial Uterine NK Cell Concentrations and Pregnancy Outcome in Women with Reproductive Failure. A Retrospective Cohort Study,” Journal of Reproductive Immunology 131 (2019): 1–6.

100. S. Dan, W. Wei, S. Yichao, et al., “Effect of Prednisolone Administration on Patients With Unexplained Recurrent Miscarriage and In Routine Intracytoplasmic Sperm Injection: A Meta-Analysis,” American Journal of Reproductive Immunology 74, no. 1 (2015): 89–97.

101. A. W. Tang, Z. Alfirevic, M. A. Turner, J. A. Drury, R. Small, and S. Quenby, “A Feasibility Trial of Screening Women With Idiopathic Recurrent Miscarriage for High Uterine Natural Killer Cell Density and Randomizing to Prednisolone or Placebo When Pregnant,” Human Reproduction 28, no. 7 (2013): 1743–1752.

102. S. D’Ippolito, F. Gavi, C. Granieri, C. De Waure, S. Giuliano, F. Cosentino, et al., “Efficacy of Corticosteroids in Patients with Recurrent Pregnancy Loss: A Systematic Review and Meta-Analysis,” American Journal of Reproductive Immunology 93, no. 1 (2025): e70037.

103. N. Li, H. M. Wu, F. Hang, Y. S. Zhang, and M. J. Li, “Women With Recurrent Spontaneous Abortion Have Decreased 25(OH) Vitamin D and VDR at the Fetal-Maternal Interface,” Brazilian Journal of Medical and Biological Research 50, no. 11 (2017): e6527

104. Z. M. Ibrahim, E. H. madany, R. M. Abdel Aal, and M. M. El Biely, “Role of 1,25-Dihydroxyvitamin D (Vitamin D3) as Immunomodulator in Recurrent Missed Miscarriage,” Middle East Fertility Society Journal 18, no. 3 (2013): 171–176.

105. M. Samimi, F. Foroozanfard, F. Amini, and M. Sehat, “Effect of Vitamin D Supplementation on Unexplained Recurrent Spontaneous Abortion: A Double-Blind Randomized Controlled Trial,” Global Journal of Health Science 9, no. 3 (2016): 95.

106. X. Chen, B. Yin, R. C. Lian, et al., “Modulatory Effects of Vitamin D On Peripheral Cellular Immunity in Patients With Recurrent Miscarriage,” American Journal of Reproductive Immunology 76, no. 6 (2016): 432–438.

107. J. Ji, H. Zhai, H. Zhou, S. Song, G. Mor, and A. Liao, “The Role and Mechanism of Vitamin D-Mediated Regulation of Treg/Th17 Balance in Recurrent Pregnancy Loss,” American Journal of Reproductive Immunology 81, no. 6 (2019): e13112.

108. P. Yang and F. Lu, “Study on the Immunomodulatory Mechanism of Vitamin D in Patients With Unexplained Recurrent Spontaneous Abortion,” Heliyon 10, no. 6 (2024): e27280.

109. G. AbdulHussain, F. Azizieh, M. Makhseed, and R. Raghupathy, “Effects of Progesterone, Dydrogesterone and Estrogen on the Production of Th1/Th2/Th17 Cytokines by Lymphocytes From Women With Recurrent Spontaneous Miscarriage,” Journal of Reproductive Immunology 140 (2020): 103132.

110. R. Raghupathy, E. Al Mutawa, M. Makhseed, F. Azizieh, and J. Szekeres-Bartho, “Modulation of Cytokine Production by Dydrogesterone in Lymphocytes From Women With Recurrent Miscarriage,” British Journal of Obstetrics and Gynaecology 112, no. 8 (2005): 1096–1101.

111. G. Barbaro, A. Inversetti, M. Cristodoro, C. Ticconi, G. Scambia, and N. Di Simone, “HLA-G and Recurrent Pregnancy Loss,” International Journal of Molecular Sciences 24, no. 3 (2023): 2557.

112. G. Saccone, C. Schoen, J. M. Franasiak, R. T. Scott, and V. Berghella, “Supplementation With Progestogens in the First Trimester of Pregnancy to Prevent Miscarriage in Women With Unexplained Recurrent Miscarriage: A Systematic Review and Meta-Analysis of Randomized, Controlled Trials,” Fertility and Sterility 107, no. 2 (2017): 430–438.

113. A. Coomarasamy, H. Williams, E. Truchanowicz, et al., “A Randomized Trial of Progesterone in Women With Recurrent Miscarriages,” New England Journal of Medicine 373, no. 22 (2015): 2141–2148.

114. M. Y. El-Zibdeh, “Dydrogesterone in the Reduction of Recurrent Spontaneous Abortion,” Journal of Steroid Biochemistry and Molecular Biology 97, no. 5 (2005): 431–434.

115. H. Guo and Q. Lu, “Efficacy of Dydrogesterone on Treating Recurrent Miscarriage and Its Influence On Immune Factors: A Systematic Review and Meta-Analysis,” Annals of Palliative Medicine 10, no. 10 (2021): 10971– 10985.

116. D. M. Haas, T. J. Hathaway, and P. S. Ramsey, “Progestogen for Preventing Miscarriage in Women With Recurrent Miscarriage of Unclear Etiology,” Cochrane Database of Systematic Reviews 2019, no. 11 (2019): CD003511.

117. A. J. Devall, A. Papadopoulou, M. Podesek, et al., “Progestogens for Preventing Miscarriage: A Network Meta-Analysis,” Cochrane Database of Systematic Reviews (Online) 4, no. 4 (2021): CD013792.

118. H. Shehata, A. Elfituri, S. K. Doumouchtsis, et al., “FIGO Good Practice Recommendations on the Use of Progesterone in the Management of Recurrent First-Trimester Miscarriage,” International Journal of Gynecology and Obstetrics 161, no. S1 (2023): 3–16.

119. F. Scarpellini, F. G. Klinger, G. Rossi, and M. Sbracia, “Immunohistochemical Study on the Expression of G-CSF, G-CSFR, VEGF, VEGFR-1, Foxp3 in First Trimester Trophoblast of Recurrent Pregnancy Loss in Pregnancies Treated With G-CSF and Controls,” International Journal of Molecular Sciences 21, no. 1 (2019): 285

120. W. Würfel, “Treatment With Granulocyte Colony-Stimulating Factor in Patients With Repetitive Implantation Failures and/or Recurrent Spontaneous Abortions,” Journal of Reproductive Immunology 108 (2015): 123–135.

121. F. Scarpellini and M. Sbracia, “Use of Granulocyte ColonyStimulating Factor for the Treatment of Unexplained Recurrent Miscarriage: A Randomised Controlled Trial,” Human Reproduction 24, no. 11 (2009): 2703–2708.

122. C. Santjohanser, C. Knieper, C. Franz, et al., “Granulocyte-Colony Stimulating Factor as Treatment Option in Patients With Recurrent Miscarriage,” Archivum Immunologiae Et Therapiae Experimentalis 61, no. 2 (2013): 159–164.

123. A. Eapen, M. Joing, P. Kwon, et al., “Recombinant Human Granulocyte-Colony Stimulating Factor in Women With Unexplained Recurrent Pregnancy Losses: A Randomized Clinical Trial,” Human Reproduction 34, no. 3 (2019): 424–432.



上一篇:基因密碼揭示:吸煙與飲酒如何影響你的心跳節(jié)奏

下一篇:03.10-03.16 臨床預(yù)測模型研究頂刊快報



郵編:400000
聯(lián)系電話:13651835632
電子郵件:zhoubaihao910@126.com
地址:重慶市沙坪壩區(qū)龍湖光年4號樓
Copyright ? 2022 重慶嘉舟生物科技有限公司 All Rights Reserved 渝ICP備2022013225號